Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 211: 117942, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042073

RESUMO

Warming sea-surface temperature has led to an increase in the prevalence of Vibrio species in marine environments. This can be observed particularly in temperate regions where conditions for their growth has become more favourable. The increased prevalence of pathogenic Vibrio species has resulted in a worldwide surge of Vibriosis infections in human and aquatic animals. This study uses sea-surface temperature data around the English and Welsh coastlines to identify locations where conditions for the presence and growth of Vibrio species is favourable. Shellfish samples collected from three locations that were experiencing an increase in sea-surface temperature were found to be positive for the presence of Vibrio species. We identified important aquaculture pathogens Vibrio rotiferianus and Vibrio jasicida from these sites that have not been reported in UK waters. We also isolated human pathogenic Vibrio species including V. parahaemolyticus from these sites. This paper reports the first isolation of V. rotiferianus and V. jasicida from UK shellfish and highlights a growing diversity of Vibrio species inhabiting British waters.


Assuntos
Vibrio , Animais , Humanos , Prevalência , Frutos do Mar , Reino Unido
2.
PLoS Pathog ; 17(1): e1009194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439894

RESUMO

The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium. We investigated the ability of V. parahaemolyticus to form VBNC cells, and to subsequently become resuscitated. The ability to control VBNC cell formation in the laboratory allowed us to selectively isolate VBNC cells using fluorescence activated cell sorting, and to differentiate subpopulations based on their metabolic activity, cell shape and the ability to cause disease in Galleria mellonella. Our results showed that two subpopulations (P1 and P2) of V. parahaemolyticus VBNC cells exist and can remain dormant in the VBNC state for long periods. VBNC subpopulation P2, had a better fitness for survival under stressful conditions and showed 100% revival under favourable conditions. Proteomic analysis of these subpopulations (at two different time points: 12 days (T12) and 50 days (T50) post VBNC) revealed that the proteome of P2 was more similar to that of the starting microcosm culture (T0) than the proteome of P1. Proteins that were significantly up or down-regulated between the different VBNC populations were identified and differentially regulated proteins were assigned into 23 functional groups, the majority being assigned to metabolism functional categories. A lactate dehydrogenase (lldD) protein, responsible for converting lactate to pyruvate, was significantly upregulated in all subpopulations of VBNC cells. Deletion of the lactate dehydrogenase (RIMD2210633:ΔlldD) gene caused cells to enter the VBNC state significantly more quickly compared to the wild-type, and adding lactate to VBNC cells aided their resuscitation and extended the resuscitation window. Addition of pyruvate to the RIMD2210633:ΔlldD strain restored the wild-type VBNC formation profile. This study suggests that lactate dehydrogenase may play a role in regulating the VBNC state.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Viabilidade Microbiana , Proteoma/metabolismo , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/patogenicidade , Virulência , Células Cultivadas , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Proteoma/análise , Vibrioses/metabolismo , Vibrioses/microbiologia , Vibrio parahaemolyticus/metabolismo
3.
Front Cell Infect Microbiol ; 10: 565975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194805

RESUMO

The formation of persister cells is one mechanism by which bacteria can survive exposure to environmental stresses. We show that Campylobacter jejuni 11168H forms persister cells at a frequency of 10-3 after exposure to 100 × MIC of penicillin G for 24 h. Staining the cell population with a redox sensitive fluorescent dye revealed that penicillin G treatment resulted in the appearance of a population of cells with increased fluorescence. We present evidence, to show this could be a consequence of increased redox protein activity in, or associated with, the electron transport chain. These data suggest that a population of penicillin G treated C. jejuni cells could undergo a remodeling of the electron transport chain in order to moderate membrane hyperpolarization and intracellular alkalization; thus reducing the antibiotic efficacy and potentially assisting in persister cell formation.


Assuntos
Campylobacter jejuni , Antibacterianos/farmacologia , Células Epiteliais , Oxirredução , Penicilinas/farmacologia
4.
J Hazard Mater ; 324(Pt A): 3-14, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26952084

RESUMO

A putative biosynthetic mechanism for selenium nanoparticles (SeNPs) and efficient reduction of selenite (SeO32-) in the bacterial strain Stenotrophomonas maltophilia SeITE02 are addressed here on the basis of information gained by a combined approach relying on a set of physiological, chemical/biochemical, microscopy, and proteomic analyses. S. maltophilia SeITE02 is demonstrated to efficiently transform selenite into elemental selenium (Se°) by reducing 100% of 0.5mM of this toxic oxyanion to Se° nanoparticles within 48h growth, in liquid medium. Since the selenite reducing activity was detected in the cytoplasmic protein fraction, while biogenic SeNPs showed mainly extracellular localization, a releasing mechanism of SeNPs from the intracellular environment is hypothesized. SeNPs appeared spherical in shape and with size ranging from 160nm to 250nm, depending on the age of the cultures. Proteomic analysis carried out on the cytoplasmic fraction identified an alcohol dehydrogenase homolog, conceivably correlated with the biogenesis of SeNPs. Finally, by Fourier Transformed Infrared Spectrometry, protein and lipid residues were detected on the surface of biogenic SeNPs. Eventually, this strain might be efficaciously exploited for the remediation of selenite-contaminated environmental matrices due to its high SeO32- reducing efficiency. Biogenic SeNPs may also be considered for technological applications in different fields.


Assuntos
Ácido Selenioso/química , Stenotrophomonas maltophilia/metabolismo , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Biodegradação Ambiental , Catálise , Nanopartículas/metabolismo , Oxirredução , Tamanho da Partícula , Proteômica , Stenotrophomonas maltophilia/genética
5.
Antimicrob Agents Chemother ; 58(10): 5775-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25049258

RESUMO

Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, ß-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.


Assuntos
Antibacterianos/farmacologia , Burkholderia/efeitos dos fármacos , Burkholderia/metabolismo , Anaerobiose , Ceftazidima/farmacologia , Resistência Microbiana a Medicamentos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
6.
Genome Announc ; 2(3)2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24812214

RESUMO

Stenotrophomonas maltophilia strain SeITE02 was isolated from the rhizosphere of the selenium-hyperaccumulating legume Astragalus bisculcatus. In this report, we provide the 4.56-Mb draft genome sequence of S. maltophilia SeITE02, a gammaproteobacterium that can withstand high concentrations of selenite and reduce these to elemental selenium.

7.
Microb Cell Fact ; 13(1): 35, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606965

RESUMO

BACKGROUND: Selenite (SeO32-) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32- to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics. The present paper discusses the reduction of selenite to SeNPs by a strain of Bacillus sp., SeITE01, isolated from the rhizosphere of the Se-hyperaccumulator legume Astragalus bisulcatus. RESULTS: Use of 16S rRNA and GyrB gene sequence analysis positioned SeITE01 phylogenetically close to B. mycoides. On agarized medium, this strain showed rhizoid growth whilst, in liquid cultures, it was capable of reducing 0.5 and 2.0 mM SeO32- within 12 and 24 hours, respectively. The resultant Se0 aggregated to form nanoparticles and the amount of Se0 measured was equivalent to the amount of selenium originally added as selenite to the growth medium. A delay of more than 24 hours was observed between the depletion of SeO32 and the detection of SeNPs. Nearly spherical-shaped SeNPs were mostly found in the extracellular environment whilst rarely in the cytoplasmic compartment. Size of SeNPs ranged from 50 to 400 nm in diameter, with dimensions greatly influenced by the incubation times. Different SeITE01 protein fractions were assayed for SeO32- reductase capability, revealing that enzymatic activity was mainly associated with the membrane fraction. Reduction of SeO32- was also detected in the supernatant of bacterial cultures upon NADH addition. CONCLUSIONS: The selenite reducing bacterial strain SeITE01 was attributed to the species Bacillus mycoides on the basis of phenotypic and molecular traits. Under aerobic conditions, the formation of SeNPs were observed both extracellularly or intracellularly. Possible mechanisms of Se0 precipitation and SeNPs assembly are suggested. SeO32- is proposed to be enzymatically reduced to Se0 through redox reactions by proteins released from bacterial cells. Sulfhydryl groups on peptides excreted outside the cells may also react directly with selenite. Furthermore, membrane reductases and the intracellular synthesis of low molecular weight thiols such as bacillithiols may also play a role in SeO32- reduction. Formation of SeNPs seems to be the result of an Ostwald ripening mechanism.


Assuntos
Bacillus/metabolismo , Nanopartículas Metálicas/química , Ácido Selenioso/química , Selênio/química , Aerobiose , Bacillus/classificação , Bacillus/genética , Proteínas de Bactérias/metabolismo , Íons/química , Oxirredução , Oxirredutases/metabolismo , Tamanho da Partícula , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
8.
J Bacteriol ; 196(2): 407-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214943

RESUMO

The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some ß-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated.


Assuntos
Burkholderia/crescimento & desenvolvimento , Burkholderia/genética , Genes Essenciais , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Aerobiose , Animais , Proteínas de Bactérias/metabolismo , Burkholderia/metabolismo , Lepidópteros/microbiologia , Transporte Proteico , Fatores de Virulência/metabolismo , Peixe-Zebra/microbiologia
9.
Res Microbiol ; 165(1): 41-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24239959

RESUMO

Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia/fisiologia , Coenzimas/biossíntese , Metaloproteínas/biossíntese , Aerobiose , Anaerobiose , Coenzimas/genética , Regulação Bacteriana da Expressão Gênica , Metaloproteínas/genética , Cofatores de Molibdênio , Nitratos/metabolismo , Pteridinas , Virulência/genética
10.
Biochem Soc Trans ; 40(6): 1239-43, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176461

RESUMO

Bacterial anaerobic respiration using selenium oxyanions as the sole electron acceptor primarily result in the precipitation of selenium biominerals observed as either intracellular or extracellular selenium deposits. Although a better understanding of the enzymology of bacterial selenate reduction is emerging, the processes by which the selenium nanospheres are constructed, and in some cases secreted, has remained poorly studied. Thauera selenatis is a Gram-negative betaproteobacterium that is capable of respiring selenate due to the presence of a periplasmic selenate reductase (SerABC). SerABC is a molybdoenzyme that catalyses the reduction of selenate to selenite by accepting electrons from the Q-pool via a dihaem c-type cytochrome (cytc4). The product selenite is presumed to be reduced in the cytoplasm, forming intracellular selenium nanospheres that are ultimately secreted into the surrounding medium. The secretion of the selenium nanospheres is accompanied by the export of a ~95 kDa protein SefA (selenium factor A). SefA has no cleavable signal peptide, suggesting that it is also exported directly for the cytoplasmic compartment. It has been suggested that SefA functions to stabilize the formation of the selenium nanospheres before secretion, possibly providing reaction sites for selenium nanosphere creation or providing a shell to prevent subsequent selenium aggregation. The present paper draws on our current knowledge of selenate respiration and selenium biomineralization in T. selenatis and other analogous systems, and extends the application of nanoparticle tracking analysis to determine the size distribution profile of the selenium nanospheres secreted.


Assuntos
Selênio/metabolismo , Thauera/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Precipitação Química , Transporte de Elétrons , Dados de Sequência Molecular , Nanosferas , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Oxirredutases/fisiologia , Periplasma/enzimologia , Periplasma/metabolismo , Homologia de Sequência de Aminoácidos , Thauera/enzimologia
11.
Proc Natl Acad Sci U S A ; 108(33): 13480-5, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21808043

RESUMO

During selenate respiration by Thauera selenatis, the reduction of selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approximately 150 nm in diameter. We report that the Se nanospheres are associated with a protein of approximately 95 kDa. Subsequent experiments to investigate the expression and secretion profile of this protein have demonstrated that it is up-regulated and secreted in response to increasing selenite concentrations. The protein was purified from Se nanospheres, and peptide fragments from a tryptic digest were used to identify the gene in the draft T. selenatis genome. A matched open reading frame was located, encoding a protein with a calculated mass of 94.5 kDa. N-terminal sequence analysis of the mature protein revealed no cleavable signal peptide, suggesting that the protein is exported directly from the cytoplasm. The protein has been called Se factor A (SefA), and homologues of known function have not been reported previously. The sefA gene was cloned and expressed in Escherichia coli, and the recombinant His-tagged SefA purified. In vivo experiments demonstrate that SefA forms larger (approximately 300 nm) Se nanospheres in E. coli when treated with selenite, and these are retained within the cell. In vitro assays demonstrate that the formation of Se nanospheres upon the reduction of selenite by glutathione are stabilized by the presence of SefA. The role of SefA in selenium nanosphere assembly has potential for exploitation in bionanomaterial fabrication.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Nanosferas/química , Selênio/metabolismo , Thauera/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Dados de Sequência Molecular , Ácido Selênico , Selênio/química , Compostos de Selênio/metabolismo , Selenito de Sódio/farmacologia , Thauera/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Biochem Soc Trans ; 39(1): 236-42, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265780

RESUMO

Bacterial cellular metabolism is renowned for its metabolic diversity and adaptability. However, certain environments present particular challenges. Aerobic metabolism of highly reduced carbon substrates by soil bacteria such as Paracoccus pantotrophus presents one such challenge since it may result in excessive electron delivery to the respiratory redox chain when compared with the availability of terminal oxidant, O2. The level of a periplasmic ubiquinol-dependent nitrate reductase, NAP, is up-regulated in the presence of highly reduced carbon substrates. NAP oxidizes ubiquinol at the periplasmic face of the cytoplasmic membrane and reduces nitrate in the periplasm. Thus its activity counteracts the accumulation of excess reducing equivalents in ubiquinol, thereby maintaining the redox poise of the ubiquinone/ubiquinol pool without contributing to the protonmotive force across the cytoplasmic membrane. Although P. pantotrophus NapAB shows a high level of substrate specificity towards nitrate, the enzyme has also been reported to reduce selenate in spectrophotometric solution assays. This transaction draws on our current knowledge concerning the bacterial respiratory nitrate reductases and extends the application of PFE (protein film electrochemistry) to resolve and quantify the selenate reductase activity of NapAB.


Assuntos
Proteínas de Bactérias/metabolismo , Nitrato Redutases/metabolismo , Nitratos/metabolismo , Compostos de Selênio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Técnicas Eletroquímicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Nitrato Redutases/química , Nitrato Redutases/genética , Oxirredução , Paracoccus pantotrophus/enzimologia , Periplasma/enzimologia , Conformação Proteica , Ácido Selênico , Selênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
13.
Biochimie ; 92(10): 1268-73, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20547201

RESUMO

Selenate reductase (SER) from Thauera selenatis is a member of a distinct class of the TAT-translocated type II molybdoenzymes and is closely related to a group of thermostable nitrate reductases (pNAR) found in hyperthermophilic archaea. In the present study the thermostable and thermo-active properties of SER, isolated with either molybdenum (Mo) or tungsten (W) at the active site, are reported. Results show that the purified Mo-SER complex is stable and active upon heat-shock incubation for 10 min at temperatures up to 60 °C. At temperatures greater than 65 °C all three subunits (SerABC) are readily denatured. The optimum temperature for maximum activity recorded was also determined to be 65 °C. T. selenatis can grow readily on a tungstate rich medium up to concentrations of 1 mM. SER isolated from periplasmic fractions from cells grown on 1 mM tungstate displayed selenate reductase activities with a 20-fold reduction in V(max) (0.01 µmol [S]/min/mg) and a 23-fold increase in substrate binding affinity (K(m) 0.7 µM). The thermo-stability and pH dependence of W-SER was shown to be similar to that observed for Mo-SER. By contrast, the optimum reaction temperature for W-SER exceeded the maximum temperature tested (>80 °C). The combined data from the kinetic analysis and thermal activity profiles provide evidence that W can substitute for Mo at the active site of SER and retain detectable selenate reductase activity. It is argued that despite the similarity in their catalytic and electron conducting subunits, the presence of a membrane anchor in the archaeal pNAR system appears pivotal to the enhanced hyperthermostability. The fact that Mo-SER is thermostable up to 65 °C however, could be advantageous when designing selenate contamination remediation strategies.


Assuntos
Oxirredutases/química , Thauera/enzimologia , Termodinâmica , Proteínas de Bactérias/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Molibdênio/farmacologia , Periplasma/enzimologia , Ligação Proteica , Tungstênio/farmacologia
14.
J Biol Chem ; 285(24): 18433-42, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20388716

RESUMO

Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported. The mid-point redox potential of the b-heme was determined by optical titration (E(m) + 234 +/- 10 mV). A profile of periplasmic c-type cytochromes expressed in T. selenatis under selenate respiring conditions was undertaken. Two c-type cytochromes were purified ( approximately 24 and approximately 6 kDa), and the 24-kDa protein (cytc-Ts4) was shown to donate electrons to SerABC in vitro. Protein sequence of cytc-Ts4 was obtained by N-terminal sequencing and liquid chromatography-tandem mass spectrometry analysis, and based upon sequence similarities, was assigned as a member of cytochrome c(4) family. Redox potentiometry, combined with UV-visible spectroscopy, showed that cytc-Ts4 is a diheme cytochrome with a redox potential of +282 +/- 10 mV, and both hemes are predicted to have His-Met ligation. To identify the membrane-bound electron donors to cytc-Ts4, growth of T. selenatis in the presence of respiratory inhibitors was monitored. The specific quinol-cytochrome c oxidoreductase (QCR) inhibitors myxothiazol and antimycin A partially inhibited selenate respiration, demonstrating that some electron flux is via the QCR. Electron transfer via a QCR and a diheme cytochrome c(4) is a novel route for a member of the DMSO reductase family of molybdoenzymes.


Assuntos
Grupo dos Citocromos c/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Hidroquinonas/química , Selênio/química , Thauera/metabolismo , Antimicina A/química , Citocromos/química , Transporte de Elétrons , Elétrons , Metacrilatos/química , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tiazóis/química
15.
J Bacteriol ; 190(24): 8075-85, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931123

RESUMO

Metal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases. Inductively coupled plasma mass spectrometry revealed that the protein contained approximately six copper atoms per polypeptide. The presence of an N-terminal "twin arginine" signal sequence suggested a periplasmic location for Cj1516, which was confirmed by the presence of p-phenylenediamine (p-PD) oxidase activity in periplasmic fractions of wild-type but not Cj1516 mutant cells. Kinetic studies showed that the pure protein exhibited p-PD, ferroxidase, and cuprous oxidase activities and was able to oxidize an analogue of the bacterial siderophore anthrachelin (3,4-dihydroxybenzoate), although no iron uptake impairment was observed in a Cj1516 mutant. However, this mutant was very sensitive to increased copper levels in minimal media, suggesting a role in copper tolerance. This was supported by increased expression of the Cj1516 gene in copper-rich media. A mutation in a second gene, the Cj1161c gene, encoding a putative CopA homologue, was also found to result in copper hypersensitivity, and a Cj1516 Cj1161c double mutant was found to be more copper sensitive than either single mutant. These observations and the apparent lack of alternative copper tolerance systems suggest that Cj1516 (CueO) and Cj1161 (CopA) are major proteins involved in copper homeostasis in C. jejuni.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/enzimologia , Cobre/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , DNA Bacteriano/genética , Espectroscopia de Ressonância de Spin Eletrônica , Genes Bacterianos , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Mutagênese Insercional , Mutação , Oxirredução , Oxirredutases/genética , Consumo de Oxigênio , Periplasma/metabolismo , Plasmídeos , Alinhamento de Sequência , Sideróforos/metabolismo
16.
FEBS Lett ; 582(15): 2333-7, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18538137

RESUMO

The present study investigated the role of selenium in the regulation of pancreatic beta-cell function. Utilising the mouse beta-cell line Min6, we have shown that selenium specifically upregulates Ipf1 (insulin promoter factor 1) gene expression, activating the -2715 to -1960 section of the Ipf1 gene promoter. Selenium increased both Ipf1 and insulin mRNA levels in Min6 cells and stimulated increases in insulin content and insulin secretion in isolated primary rat islets of Langerhans. These data are the first to implicate selenium in the regulation of specific beta-cell target genes and suggest that selenium potentially promotes an overall improvement in islet function.


Assuntos
Expressão Gênica , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/metabolismo , Insulina/genética , Selênio/metabolismo , Transativadores/genética , Animais , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , RNA Mensageiro/metabolismo , Ratos , Ácido Selênico , Selênio/farmacologia , Compostos de Selênio/farmacologia
17.
J Ind Microbiol Biotechnol ; 35(8): 867-73, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18449586

RESUMO

Enterobacter cloacae SLD1a-1 is capable of the complete reduction of selenate to selenium and the initial reaction is catalysed by a membrane-bound selenate reductase. In the present study, continuous culture experiments were employed to investigate the possibility that selenate reduction, via the selenate reductase, might provide sufficient energy to maintain cell viability when deprived of the preferred anaerobic terminal electron acceptor nitrate. The evidence presented indicates that the selenate reductase supports slow growth that retards the wash-out of the culture when switching to nitrate-depleted selenate-rich medium, and provides a proton motive force for sustained cell maintenance. In contrast, a strain of E. cloacae (sub sp. cloacae) that does not readily reduce selenate, cannot sustain cell maintenance when switching to a selenate-rich medium. This work demonstrates for the first time that respiratory linked selenate reduction gives E. cloacae SLD1a-1 a selective advantage when inhabiting selenate-contaminated environments and highlights the suitability of utilising E. cloacae SLD1a-1 when developing selenium remediation strategies.


Assuntos
Enterobacter cloacae/crescimento & desenvolvimento , Enterobacter cloacae/metabolismo , Compostos de Selênio/metabolismo , Anaerobiose , Proteínas de Bactérias/metabolismo , Viabilidade Microbiana , Modelos Biológicos , Nitratos/metabolismo , Oxirredução , Oxirredutases/metabolismo , Ácido Selênico , Selênio/metabolismo
18.
FEMS Microbiol Lett ; 276(2): 129-39, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17888006

RESUMO

Many species of Bacteria and Archaea respire nitrate using a molybdenum-dependent membrane-bound respiratory system called Nar. Classically, the 'Bacterial' Nar system is oriented such that nitrate reduction takes place on the inside of this membrane. However, the active site subunit of the 'Archaeal' Nar systems has a twin arginine ('RR') motif, which is a suggestion of translocation to the outside of the cytoplasmic membrane. These 'Archaeal' type of nitrate reductases are part of a group of molybdoenzymes with an 'RR' motif that are predicted to have an aspartate ligand to the molybdenum ion. This group includes selenate reductases and possible sequence signatures are described that serve to distinguish the Nar nitrate reductases from the selenate reductases. The 'RR' sequences of nitrate reductases of Archaea and some that have recently emerged in Bacteria are also considered and it is concluded that there is good evidence for there being both Archaeal and Bacterial examples of Nar-type nitrate reductases with an active site on the outside of the cytoplasmic membrane. Finally, the bioenergetic consequences of nitrate reduction on the outside of the cytoplasmic membrane have been explored.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/metabolismo , Membrana Celular/enzimologia , Proteínas de Membrana/metabolismo , Nitrato Redutases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Bactérias/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Nitrato Redutases/química , Nitrato Redutases/genética
19.
Biochem J ; 408(1): 19-28, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17688424

RESUMO

Periplasmic SER (selenate reductase) from Thauera selenatis is classified as a member of the Tat (twin-arginine translocase)-translocated (Type II) molybdoenzymes and comprises three subunits each containing redox cofactors. Variable-temperature X-band EPR spectra of the purified SER complex showed features attributable to centres [3Fe-4S]1+, [4Fe-4S]1+, Mo(V) and haem-b. EPR-monitored redox-potentiometric titration of the SerABC complex (SerA-SerB-SerC, a hetero-trimetric complex of alphabetagamma subunits) revealed that the [3Fe-4S] cluster (FS4, iron-sulfur cluster 4) titrated as n=1 Nernstian component with a midpoint redox potential (E(m)) of +118+/-10 mV for the [3Fe-4S]1+/0 couple. A [4Fe-4S]1+ cluster EPR signal developed over a range of potentials between 300 and -200 mV and was best fitted to two sequential Nernstian n=1 curves with midpoint redox potentials of +183+/-10 mV (FS1) and -51+/-10 mV (FS3) for the two [4Fe-4S]1+/2+ cluster couples. Upon further reduction, the observed signal intensity of the [4Fe-4S]1+ cluster decreases. This change in intensity can again be fitted to an n=1 Nernstian component with a midpoint potential (E(m)) of about -356 mV (FS2). It is considered likely that, at low redox potential (E(m) less than -300 mV), the remaining oxidized cluster is reduced (spin S=1/2) and strongly spin-couples to a neighbouring [4Fe-4S]1+ cluster rendering both centres EPR-silent. The involvement of both [3Fe-4S] and [4Fe-4S] clusters in electron transfer to the active site of the periplasmic SER was demonstrated by the re-oxidation of the clusters under anaerobic selenate turnover conditions. Attempts to detect a high-spin [4Fe-4S] cluster (FS0) in SerA at low temperature (5 K) and high power (100 mW) were unsuccessful. The Mo(V) EPR recorded at 60 K, in samples poised at pH 6.0, displays principal g values of g3 approximately 1.999, g2 approximately 1.996 and g1 approximately 1.965 (g(av) 1.9867). The dominant features at g2 and g3 are not split, but hyperfine splitting is observed in the g1 region of the spectrum and can be best simulated as arising from a single proton with a coupling constant of A1 (1H)=1.014 mT. The presence of the haem-b moiety in SerC was demonstrated by the detection of a signal at g approximately 3.33 and is consistent with haem co-ordinated by methionine and lysine axial ligands. The combined evidence from EPR analysis and sequence alignments supports the assignment of the periplasmic SER as a member of the Type II molybdoenzymes and provides the first spectro-potentiometric insight into an enzyme that catalyses a key reductive reaction in the biogeochemical selenium cycle.


Assuntos
Citoplasma/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Thauera/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Molibdênio/metabolismo , Oxirredução , Ligação Proteica , Sulfatos/química , Sulfatos/metabolismo , Temperatura
20.
J Biol Chem ; 282(9): 6425-37, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17130127

RESUMO

The Escherichia coli NapA (periplasmic nitrate reductase) contains a [4Fe-4S] cluster and a Mo-bis-molybdopterin guanine dinucleotide cofactor. The NapA holoenzyme associates with a di-heme c-type cytochrome redox partner (NapB). These proteins have been purified and studied by spectropotentiometry, and the structure of NapA has been determined. In contrast to the well characterized heterodimeric NapAB systems ofalpha-proteobacteria, such as Rhodobacter sphaeroides and Paracoccus pantotrophus, the gamma-proteobacterial E. coli NapA and NapB proteins purify independently and not as a tight heterodimeric complex. This relatively weak interaction is reflected in dissociation constants of 15 and 32 mum determined for oxidized and reduced NapAB complexes, respectively. The surface electrostatic potential of E. coli NapA in the apparent NapB binding region is markedly less polar and anionic than that of the alpha-proteobacterial NapA, which may underlie the weaker binding of NapB. The molybdenum ion coordination sphere of E. coli NapA includes two molybdopterin guanine dinucleotide dithiolenes, a protein-derived cysteinyl ligand and an oxygen atom. The Mo-O bond length is 2.6 A, which is indicative of a water ligand. The potential range over which the Mo(6+) state is reduced to the Mo(5+) state in either NapA (between +100 and -100 mV) or the NapAB complex (-150 to -350 mV) is much lower than that reported for R. sphaeroides NapA (midpoint potential Mo(6+/5+) > +350 mV), and the form of the Mo(5+) EPR signal is quite distinct. In E. coli NapA or NapAB, the Mo(5+) state could not be further reduced to Mo(4+). We then propose a catalytic cycle for E. coli NapA in which nitrate binds to the Mo(5+) ion and where a stable des-oxo Mo(6+) species may participate.


Assuntos
Proteínas de Escherichia coli/química , Molibdênio/química , Nitrato Redutase/química , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Ligação Proteica , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...